A functional model for the tensor product of level 1 highest and level -1 lowest modules for the quantum affine algebra Uq(sT2)

نویسندگان

  • Boris Feigin
  • Michio Jimbo
  • Masaki Kashiwara
  • Tetsuji Miwa
  • Eugene Mukhin
  • Yoshihiro Takeyama
چکیده

Let V (Λi) (resp., V (−Λj)) be a fundamental integrable highest (resp., lowest) weight module of Uq(ŝl2). The tensor product V (Λi)⊗ V (−Λj) is filtered by submodules Fn = Uq(ŝl2)(vi ⊗ vn−i), n ≥ 0, n ≡ i − j mod 2, where vi ∈ V (Λi) is the highest vector and vn−i ∈ V (−Λj) is an extremal vector. We show that Fn/Fn+2 is isomorphic to the level 0 extremal weight module V (n(Λ1 − Λ0)). Using this we give a functional realization of the completion of V (Λi) ⊗ V (−Λj) by the filtration (Fn)n≥0. The subspace of V (Λi)⊗V (−Λj) of sl2-weight m is mapped to a certain space of sequences (Pn,l)n≥0,n≡i−j mod 2,n−2l=m, whose members Pn,l = Pn,l(X1, . . . , Xl|z1, . . . , zn) are symmetric polynomials in Xa and symmetric Laurent polynomials in zk, with additional constraints. When the parameter q is specialized to √ −1, this construction settles a conjecture which arose in the study of form factors in integrable field theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CONSTRUCTION OF LEVEL 1 IRREDUCIBLE MODULES FOR Uq(ŝp4) USING LEVEL 2 INTERTWINERS FOR Uq(ŝl2)

We bosonize certain components of level l Uq(ŝl2)-intertwiners of (l+1)-dimensions. For l = 2, these intertwiners, after certain modification by bosonic vertex operators, are added to the algebra Uq(ŝl2) at level 2 to construct all irreducible highest weight representations of level 1 for the quantum affine algebra Uq(ŝp4).

متن کامل

RIMS-1133 TOROIDAL ACTIONS ON LEVEL 1 MODULES OF Uq ( ̂ sln).

We propose a proof of the recent observation due to Varagnolo and Vasserot that the q-deformed Fock spaces are modules of the quantum toroidal algebra U ′ q(sln,tor) (n ≥ 3) with the level (0, 1). The quantum toroidal action on the Fock space depends on a certain parameter κ. We find that with a specific choice of this parameter the action on the Fock spaces gives rise to the toroidal action on...

متن کامل

A Littlewood-Richardson rule for evaluation representations of Uq(ŝln)

We give a combinatorial description of the composition factors of the induction product of two evaluation modules of the affine Iwahori-Hecke algebra of type GLm. Using quantum affine Schur-Weyl duality, this yields a combinatorial description of the composition factors of the tensor product of two evaluation modules of the quantum affine algebra Uq(ŝln).

متن کامل

The Decomposition of Level–1 Irreducible Highest Weight Modules with Respect to the Level–0 Actions of the Quantum Affine

We decompose the level–1 irreducible highest weight modules of the quantum affine algebra Uq(ŝln) with respect to the level–0 U ′ q (ŝln)–action defined in [11]. The decomposition is parameterized by the skew Young diagrams of the border strip type.

متن کامل

Relativistic Calogero-Sutherland Model : Spin Generalization, Quantum Affine Symmetry and Dynamical Correlation Functions

Spin generalization of the relativistic Calogero-Sutherland model is constructed by using the affine Hecke algebra and shown to possess the quantum affine symmetry Uq(ĝl2). The spin-less model is exactly diagonalized by means of the Macdonald symmetric polynomials. The dynamical density-density correlation function as well as one-particle Green function are evaluated exactly. We also investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004